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STRUCTURE OF SHOCK-WAVE FLOWS WITH PHASE TRANSITIONS IN IRON NEAR A FREE SURFACE 
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A compression shock wave with a stable three-front configuration, associated with a 
polymorphic phase transition, was observed in Armco iron in [I]. The ~ $ E transformation 
in iron was carefully studied in static tests in [2], which discovered the martensitic char- 
acter of the phase transition and showed that the ~- and s-phases of iron coexist within a 
broad range of pressures corresponding to the beginning of the forward and reverse transi- 
tions. In [3] manganin pressure transducers were used to record directly the multifront 
structure of both a compressive shock wave and a rarefaction wave at internal points of an 
iron specimen. Shock unloading waves were also recorded experimentally. In [4] laser inter- 
ferometry was used to determine accurately the velocity profile of a free surface of a shock- 
loaded iron target. The most complete study of the polymorphic transformation in iron under 
dynamic loading conditions was made in [5], where again laser interferometry was used to ob- 
tain detailed measurements of the velocity of the free surface of Armco iron specimens loaded 
by shock waves of different intensities. The investigation uncovered fine-scale shock-wave 
effects connected with the arrival of a three-front shock wave at the free surface. In par- 
ticular, it was shown that under certain conditions an additional fourth velocity jump occurs 
in the velocity profile of the free surface behind the third wave. The experiments were con- 
ducted for specimens of different thickness within the stress range from i0 to 40 GPa. 

Numerical studies connected with the travel of shock waves in solids and the occurrence 
of associated physicochemical effects were performed in [6, 7], which developed a model of 
an elastic-plastic body with phase transitions and proposed phase-transition kinetics. The 
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kinetics of phase transitions was further studied in [8]. The model developed was used in 

[8] to solve a unidimensional nonsteady problem on the propagation of a shock wave in iron 

for the experimental conditions in [3, 4]. The kinetics of phase transitions in iron were 

refined by comparing theoretical pressure profiles at internal points with experimental 

data [3] and comparing velocity profiles of the free surface with the results in [4]. 

The present article, which is a continuation of [9], uses the model developed in [6, 7] 

and the phase-transition kinetics proposed in [7, 8] to analyze numerically the propagation 
of shock waves of different intensity in Armco iron and the effects occurring with their 
reflection from a free surface of the specimen. The results of the numerical study are 
compared with well-known experimental data, indicating that the proposed mathematical model 

of a two-phase elastic-plastic body makes it possible to describe adequately shock-wave flows 
with and without phase transitions in iron. 

i. In a one-velocity, one-temperature model of a two-phase elastic-plastic body with a 
total phase pressure and phase transitions, each phase is characterized by the true density 
o (ratio of the mass of a phase to the volume it occupies) and the volume content ei (~i + Pi 

~2 = i), while the velocities, temperatures, and pressures of the phases coincide: vl = v2 = 
v, TI = T= = T, Pl = P2 = P. 

Coincidence of the velocities and temperatures of the phases is due to the fact that the 
forces of interaction and rates of heat transfer in solids between phases are so great that 
the macroscopic displacement of the phases relative to each other and disagreement of their 
temperatures can be ignored. The equality of the pressures can be explained by the fact that 
in the propagation of the powerful shock waves (p > 1 GPa) at which phase transitions occur 
the properties of the solid approach the properties of liquids, and mixtures of liquids are 
characterized by equal pressures. Also, in the two-phase condensed media formed during shock 
loading, the densities, compressibilities, and specific heats of the phases do not differ very 

much from one another. This too diminishes the possibility of multivelocity and multitempera- 
ture effects and the effects of a pressure difference in the phases [7]. 

We introduce the stress deviator T kl so that the model retains certain properties inher- 
ent to solids (elasticity, plasticity, resistance to shear strain, a higher rate of propaga- 
tion of weak perturbations than in a hydrodynamic model). Thus, the stress tensor o kl is 
represented in the form of the sum of the hydrostatic and deviator parts: a k7 = --p6 kl + T k~, 

where p depends only on the true density and temperature of the phase: p = p1(p ~ T) P2(P~ 
T), and T kl for the mixture is taken in the form 

hl 
T hl = ~ I T ~  l ~ ~2X2 �9 

The s t r e s s  d e v i a t o r  o f  ~he i - t h  phase  T~ 7 i s  assumed to  change  in  a c c o r d a n c e  w i t h  H o o k e ' s  law 
up t o  the  y i e l d  p o i n t  z~. Then p l a s t i c  f l o w  b e g i n s ,  which  i s  c h a r a c t e r i z e d  by t h e  c o n s e r v a -  
t i o n  of ~l at the yield point. 

The principal equations of the model in Lagrangian coordinates (r, t) are as follows 
for the unidimensional plane case 

P0 0Pl Ov + P0 
p ot + Pl ~-r ~ 7 ~  = O, 

_ _ _  Po 0 v Og t O o ~ 1 6 3  Po 
. p 8 t  ~i- = - - ' O r  

( i .  1) PO [ 0el Oe2 ] 8v 
7 [P~-57 + P2 "ag + (% - -  e~) Y~2 ~ a ~ gTr, 

3 

~i _ p + ~ i ,  p=p~(p~ ,T)=p=(p~ ,T)  ' ad 4 Poe, 

where Pi is the ratio of the mass of the i-th phase to the volume of the entire mixture, Pi = 
o 

0iai (i = i, 2); p is the density of the mixture, p = 0~ + P2; the subscript 0 denotes the 
initial state at t = 0; J~= is the rate of phase transition, equal to the mass transferred 
from the first phase to the second phase in a unit time in a unit volume of the mixture; e i 

is the specific energy of the i-th phase; a~ and T ~ are the principal components of the stress 
tensor and stress-tensor deviator for the mixture. The elastic constant ~ and the yield point 
T* for the two-phase mixture were taken in the form 

= a l p  1 + a 2 ~  2, T $ = a l T  ~ + a2T2.  

The specific energy e(p ~ T) and pressure p(pO, T) for any of the phases of a solid can 
be represented in the form of the sum of three components [i0, ii], which describe the elas- 
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tic properties of a cold body under hydrostatic pressure, harmonic vibrations of the atoms in 

the lattice, and thermal excitation of the electrons together with anharmonic effects of 
atomic vibration. The last component becomes important only at high pressures and tempera- 

tures (p > i00 GPa, T > 10,000~ and is not considered here: 

e(p ~ T) = ep + eT, p(p0, T) = pp + PT. ( 1 . 2 )  

To describe the elastic properties of a cold solid, we take the Born--Mayer potential for the 

interaction of solids [ii]: 

p0 
pp (po) = Ax2/n exp b (1 - -  x - 1 ] 3 )  - -  Kx a~, x = ~ ,  ( 1 . 3 )  

ep (p0) = 3Ab-1 (9~)-1 exp b ( i  - -  x -1~) - -  3K (p~)-i  x l / 3  a 

where ~ is the initial density. The thermal components have the form [ii] 

pT(p ~ T) = ?rp~ eT(p 0, T) = cvT, ( 1 . 4 )  

where yT(p ~ is the Gruneisen constant; c V is the specific heat at constant volume. 

The rate of the phase transitions is higher, the greater the nonequilibrium, i.e., the 

more the pressure p in the medium differs from the equilibrium value Ps(T), which was taken 

in the form [6] 

ps(T)  = ao + a l T  + a2r ~. ( 1 . 5 )  

Separating the rate of the phase transitions J12 into two terms 

Y12 = ]12 - -  ] 2 .  

e a c h  o f  w h i c h  c a n  o n l y  b e  n o n n e g a t i v e ,  we can  t a k e  t h e  f o l l o w i n g  k i n e t i c s  {7,  8 ] :  

y~j=a~/~i--exp[--i--~-ij I j], i= i ,2 ,  ]=1,2, i:~]. (1.6) 

T h e s e  r e l a t i o n s  l e a d  t o  some h y s t e r e s i s ,  w h i c h  i s  g o v e r n e d  by t h e  k i n e t i c  p a r a m e t e r s  A i j  and 
nij, i.e., the 1 + 2 phase transition occurs mainly at pressures substantially greater than 
ps(T), while the 2 § 1 transition occurs at pressure substantially less than Ps(T). 

System (i.i), together with equations of state (1.2)-(1.4), aprescribedphaseequilibrium 

line (1.5), known yield points T~, r~, known elastic moduli DI and ~2, and known coefficients 
in (1.6), is closed in the region of continuous motion of the two-phase body. It was solved 
by the straight-line or particle method using pseudoviscosity. Derivatives with respect to 
r at internal points were approximated by a second-order central divided difference. The dif- 
ference relations at the boundaries were chosen so that the energy and momentum integrals 
were satisfied exactly. The resulting system of 6N (N is the number of particles into which 
the theoretical region was divided) ordinary differential equations was solved by the modified 

Euler method. 

2. Within the framework of the above model we solved a nonsteady problem on the impact 
of a plate against a die for the conditions of the experiments in [5], in which the impact 
velocity vo and target thickness L were varied. The theoretical curves obtained describing 
the evolution of the velocity of the free surface vf(t) practically coincided with the experi- 
mental curves and are shown in Fig. i. The time in each experiment was reckoned from the moment 
of impact and was normalized with respect to the length of the target. The numbers of the 
curves pertain to the following values of striker velocity and target thickness (Vo, mm/~sec, 
L, mm): 1 for 0.612, 6.37; 2 for 0.671, 6.38; 3 for 0.992, 6.32; 4 for 1.15, 6.31; 5 for 1.292, 
6.314; 6 for 1.40, 15.8; 7 for 1.56, 19.8; 8 for 1.57, 6.37; 9 for 1.90, 6.35. For a detailed 
analysis of the pattern of shock-wave flow and the structure of the velocity of the free sur- 
face, we chose a characteristic experiment, corresponding to line 5 in Fig. i. In this ex- 
periment, the thickness of the striker (plate) was equal to the thickness of the target and 
was 6.314 mm, striker velocity was 1.292 mm/~sec, and the stress initiated here was 24 GPa. 

The solid lines in Fig. 2 show the longitudinal stress o~(r) in the specimen for the 
present case at different moments of time. This figure allows us to take a detailed look at 
the pattern of arrival of the three-front shock wave at the free surface and its transforma- 
tion during reflection. The perturbation begins with the elastic precursor ab, which is 
followed by the first plastic wave bc. The Lagrangian velocity of the plastic wave is D (~) = 
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5.05 km/sec, which agrees with the results in [3] and is close to the results in [5] (in [5], 

D(l) = 5.07 km/sec). This wave compresses the substance in the form of the first phase. Load- 
ing is completed in the second shock wave cd, which transforms the substance into the second, 
denser phase and compresses it in this phase. The velocity of the second shock wave D(12) = 

4.28 km/sec (in [5], it is 4.16 km/sec). It is apparent from the curve corresponding to the 
moment of time 1.2 ~sec that the first shock wave is approaching the free surface but that it 
has already been weakened by the reflected elastic precursor (its intensity is about 1.2 GPa). 
At the next moment of time there is further attenuation of the wave bc as a result of its own 
reflection from the free surface. The reflected wave bc goes into the depth of the specimen, 
unloading it by the amount of pressure p(c). At the same time, the front of the second shock 
wave cd moves toward the free surface (the curve corresponding to 1.4 usec) and reaches it at 

about 1.5 ~sec (the arrows in the figure indicate the direction of the waves). The three- 
front configuration of the unloading wave can be seen in the figure on the curve correspond- 
ing to 1.8 ~sec. Quite evident is the unloading shock wave gb, which changes the E-phase of 
the iron into the m-phase and then unloads it in the plastic regime. Also apparent is the 
hysteresis of the ~ $ s phase transition. The forward phase transition occurs (mainly) at 
stresses of about 14.2 GPa, while the reverse transition occurs at stresses of about 11.5 GPa~ 
These findings agree well with the results in [3] (15 and 10.8 GPa, respectively). In [5] the 

stress at the front of the wave bc, i.e., the stress at which the phase transition occurred, 
was calculated from the velocity of the free surface as being 13.3 GPa. However, measurements 
of the velocity of the free surface give information on the layers adjacent to it, and the 
stress in these layers is lower due to unloading of the surface. It is apparent from the curve 
corresponding to 1.2 ~see in Fig. 2 that the free surface is approached by a wave, the stress 
at the front of which is about 13 GPa~ It should be noted that the stress is no greater than 
14 GPa in a layer about 0.85 mm thick adjacent to the free surface~ i.e., in this layer the 
iron is always in the s-phase (the boundary of this region is indicated by the dashed line in 
Fig. 2). 

In Fig. 3 the motion of the phase boundary in the target is shown in the form of curves 
of the volume content of the initial ~-phase of iron at different moments of time. It is ap- 
parent that in a layer about 0.85 mm thick adjacent to the free surface the iron is almost 

always in the s-phase. This layer is adjoined by a thin layer about 0.15 mm thick (hatched 
in Fig. 3) consisting of a mixture of the two phases. Intensive ~ § s and c + ~ transitions 
occur in this layer. The layer separating the ~- and ~-phases exists for about 0.2 ~sec. 
At subsequent moments of time the boundary of the s-phase is moved to the left, and the tran- 
sitional zone becomes blurred. 

The solid lines in Fig. 4 show the dependence of stress on time o'(t) at different 
depths in the specimen (the numbers correspond to the depths, in millimeters). Both the 
loading and unloading shock waves are evident on the curve corresponding to a depth of 5 mm. 
At a depth of 5.64 mm the stress is no greater than 13.5 GPa, and there is no phase transi- 
tion or unloading shock wave. The curve corresponding to a depth of 6.15 mm illustrates the 
interaction of the three-stage shock wave with the free surface. At the moment of time Io0 
usec the elastic precursor ab passes through the 6.15-mm section and decays. The same depth 
is reached by the wave bc at 1.2 usec, and the stress increases to 12 GPa but falls very 
rapidly due to the approach of the wave bc reflected from the nearby free surface. This point 
is then reached by the second plastic wave, and the stress again increases to 5 GPa. 
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Figure 5 presents in greater detail experimental (dotted line) and theoretical (solid 
line) oscillograms of the change in the velocity of the free surface. The following letter 
designations were used to identify the velocity profiles of the free surface vf(t): ab cor- 
responds to reflection of the elastic precursor; bc corresponds to the reflection of the first 
plastic wave; cd corresponds to the reflection of the phase-transition wave. One more veloc- 
ity jump dd' appears on the experimental and theoretical profiles of free-surface velocity. 
The authors of [5] called this the PIR-wave (Phase Interface Reflection) and interpreted it 
as the result of the existence of an interface between the ~- and s-phases near the free sur- 
face. To determine how the phase boundary (interface) affects the formation of the PIR-wave, 
we performed two model calculations for two hypothetical cases. 

Beginning from the moment when the second plastic wave reaches the free surface (this 
.o (i, j = i, 2, i # j) in (1.6) are assumed to occurs in about 1.5 Dsec), the coefficients 3ih 

be zero, i.e., it is assumed that no phase transitions occur. The entire medium is artifi- 
cially assumed to be u-phase iron. Then there is also no phase boundary, the unloading wave 
travels deep into the specimen, and the velocity profile of the free surface is described by 
the dot-dash line in Fig. 5. In this case, the velocity of the free surface reaches a maxi- 
mum with reflection of the wave cd and retains this maximum for some time. The additional 
velocity jump is absent. Figure 4 also uses a dot-dash line to show the decay of the stress 
~i at a depth of 5.64 mm with reflection of the wave cd from the free surface when the entire 
medium is s-phase iron. 

The next model calculation was performed for the following hypothetical situation -- from 
the moment the second plastic wave (cd) reaches the free surface the phase transitions cease 
(the coefficients j~j (i, j = i, 2, i r j) in (1.6) are assumed to be zero) and the medium 
is artificially "froZen," i.e., a stationary boundary between the ~- and s-phases of iron is 
created. In this case, the unloading wave created with the reflection of the wave cd from 
the free surface first travels through the softer m-phase, unloading it to zero stresses. It 
then arrives at the stiffer s-phase and splits. Part of the wave proceeds farther and part 
of it is reflected backward, creating tensile stresses up to 1 GPa and slowing the free sur- 
face (dashed line in Fig. 5). The relation o1(t) corresponding to this case at depths of 5.64 
and 6.15 mm is shown in Fig. 4 by a dashed line. It is apparent from both curves that in 
reality the stress in the layer adjacent to the free surface is considerably higher, i.e., 
in this case the unloading wave formed with the arrival of the second plastic wave cd at the 
free surface strikes the phase boundary between m-iron and s-iron but is reflected by this 
interface as an additional compression wave, which causes the additional jump in the velocity 
of the free surface dd' In fact, an intensive E § ~ phase transition occurs in the layer 
separating the ~- and s-phases, the material in this case undergoing abrupt expansion and be- 
having as iron which is softer than the s-phase. Thus, the unloading wave is reflected from 
this "soft" layer as a compression wave. 
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As shown by the present calculations and the results of measurements in [5], the appear- 
ance of a PIR-wave dd' on the profile vf(t) is not possible for all shock wayes.with, ~.~ 

phase transitions.(la)It Is" posslble" to distinguish characteristic pressures p~12) and 21 
p~21) 

such that at p > PS the ~§ ; phase transition occurs fairly rapidly and at p < p~ ~ the 
same is true of the e ~ u phase transition. These pressures can be represented in the form 

p~2) = PS + A, p~l) = PS - -  A (& ~ 5 GPa); 

and  f o r  i r o n  p~12)~ ~ 18 GPa, p J21)  :: 8 GPa. The wave bc r e f l e c t e d  f rom t h e  f r e e  s u r f a c e  w e a k -  
ens  t h e  i n c i d e n t  p h a s e - t r a n s i t i o n  ~ wave cd by t h e  amoun t  of  p r e s s u r e  p ( c )  ~ PS" I f  p ( d )  < p~2~)  
a f t e r  t h i s  w e a k e n i n g  and  i f  e - p h a s e  i s  p r e s e n t  t h e n  t h e  r e v e r s e  p h a s e  t r a n s i t i o n  c + a o c c u r s  
i m m e d i a t e l y  n e a r  t h e  f r e e  s u r f a c e .  T h i s  t r a n s i t i o n  f a c i l i t a t e s  t h e  movement  o f  t h e  a b o v e -  
m e n t i o n e d  p h a s e  b o u n d a r y  away f rom t h e  f r e e  s u r f a c e .  As a r e s u l t ,  i f  t h e  i n t e n s i t y  o f  t h e  
incident wave is less than 2Ps -- ~ = 21 GPa, then the wave dd' is eithe~ a~sent or is severely 
eroded (curves 3 and 4 in Fig. i)- If after weakening p~12) > p(d) > p;21j i.e., the maxi- 
mum stress is less than 31 GPa but greater than 21 GPa, then the phase boundary remains nearly 
stationary for some period of time at a certain depth near the free surface, thereby facilitat- 
ing the formation of a PIR-wave reflected from the phase boundary. 

When the pressure behind the wave cd, equal to p(d), is greater than 2Ps + A = 31 GPa, 
then after it is reduced by the unloading wave due to reflection of the wave bc from the free 
surface, it becomes greater than p~2), so that ~ § s phase transitions cease only during re- 

flection of the wave cd from the free surface, and the phase boundary moves almost up to the 
free surface. In this case, the wave dd' appears on the profile vf(t) immediately after the 
wave cd, and there is no PIR-wave. 

It should be kept in mind that experimental detection of a PIR-wave requires the use of 
very sophisticated measurement technology. Only the utilization of the capabilities of 
laser interferometry allowed the authors of [5] to record such a wave. Similarly, detection 
of a PIR-wave in calculations requires a high degree of accuracy with a sufficiently small 
computing interval. 

§ 
Numerical investigation of the movement of shock waves in iron undergoing ~ § e phase 

transitions and comparison with experimental data have shown that the model of a two-phase 
elastic-plastic continuum used here with the kinetic parameters from [8] makes it possible 
not only to understand and sufficiently accurately describe shock-wave phenomena occurring 
with physicochemical transformations, but also to supplement experimental results. This is 
important because it is extremely difficult to empirically measure such effects or reliably 
calculate them indirectly from quantities such as the thickness of a layer of material ad- 
jacent to the free surface and not undergoing phase transformation, the time required for the 
phase boundary to reach the maximum depth, or the time the boundary remains at this depth. 
Numerical analysis makes it possible to obtain the complete flow pattern. 
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The propagation of low-intensity shock waves (of the order of several gigapascals) in 
porous solids has a number of particularities [i] associated with the nonholonomicity of the 
equation of state [2]. The behavioral characteristics of a porous material on a range of 
pressures comparable with its strength are related to the irreversible nature of the deforma- 
tion of the medium and the importance of the influence of its strength and viscous properties 
[2]. In [3] it was shown that the anomalous behavior of the shock adiabat cannot be explained 
starting from the assumption that the porous material is in a state of thermodynamic equilib- 
rium under shock compression. The main cause of the absence of thermodynamic equilibrium be- 
hind the shock front is thought to be the nonuniform heating of the material, which is con- 
firmed by experiment [4-6]. The results of [7, 8] indicate that heating of the porous mate- 
rial is most pronounced in the neighborhood of the pores, where the temperature may exceed the 
melting points. 

Theoretical studies [9] have made it possible to establish the characteristics of the 
behavior of a porous substance under shock compression associated with local melting in the 
vicinity of the pores. It has been shown that the reduction in mechanical strength due to 
local melting leads to a break in the shock adiabat at the point at which melting begins. In 
this case the nonuniformity in the distribution of the dissipated energy depends to a con- 
siderable extent on the initial porosity. The investigation [9] was carried out on the as- 
sumption that the characteristic pore collapse times are substantially less than the char- 

acteristic thermal relaxation times. 

Experimental studies [10-12] indicate that the initial pore size has a considerable in- 
fluence on the nonequilibrium character of the heat release in shock compression, especially 
in the region of low loading pressures. Similar conclusions were reached in investigating 
the effect of particle size on the sensitivity of explosive charges to ignition [13-15]. 

Below we investigate the effect of initial pore size on the heating of a material in 
shock compression. The influence of the shock wave amplitude, the viscosity coefficient, and 
the yield point on the maximum possible temperature rise is analyzed. The dependence of the 
heating dynamics on the thermophysical properties of the porous material is studied. 

Let us consider the behavior of a porous material in response to the propagation of a 
low-intensity shock wave whose amplitude is so small that the compressibility of the solid 
can be neglected, but large enough for viscoplastic flow to develop in the vicinity of the 
pores. On this pressure interval the width of the shock front is much greater than the size 
of the inhomogeneities [i], and the change in density is mainly attributable to the collapse 
of the pores. We will base our investigation on the spherical cell model [i, 2], assuming 
that on the pressure range in question the density of the solid Ps is constant. The porosity 
parameter, or the ratio of the total volume of the material to the solid volume, is a = b3/ 
(b 3 -- a3), where b and a are the instantaneous radii of the cell and the pore. The initial 
cell radius bo is found from the condition that the total mass of the cells per unit mass is 
equal to i, i.e., 4~NPs(b~ -- a~)/3 = i, where N is the number of cells per unit mass. Using 
the definition for the initial porosity parameter ao, we can also write this condition in the 

form 

4nNps,a~/[3 (~o - -  t ) ]  = 1.  
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